Advanced Logic Exam April 3, 2019: model answers

Rineke Verbrugge

19 June, 2020

Let L_{\leftrightarrow} be an alternative language of propositional logic based on the operator \leftrightarrow only (so without \neg , \land , \lor , \rightarrow).

(a) Give an inductive definition of the well-formed formulas of L_{\leftrightarrow} .

(b) Give an inductive definition of v(A), the truth value of formula A in the language L_{\leftrightarrow} under valuation v.

(c) Let valuation v_1 be given such that $v_1(p) = 1$ for all propositional parameters p. Prove by induction that $v_1(A) = 1$ for all formulas A in L_{\leftrightarrow} .

(d) Is $\{\leftrightarrow\}$ functionally complete, i.e. is it the case that every formula of propositional logic is equivalent to a formula in L_{\leftrightarrow} ? Explain your answer.

(a) Inductive definition of the well-formed formulas (wffs) of L_{\leftrightarrow} :

- 1. Each propositional parameter / atom p_i is a wff of L_{\leftrightarrow}
- 2. If A and B are wffs of L_{\leftrightarrow} , then so is $(A \leftrightarrow B)$
- 3. Nothing is a wff of L_{\leftrightarrow} if it cannot be constructed in finitely many iterations of steps 1 and 2.
- (b) Inductive definition of the valuation function v:
 - 1. $v(p_i)$ for all propositional parameters / atoms p_i is defined

2.
$$v(A \leftrightarrow B) = 1 - |v(A) - v(B)|$$

Also correct: $v(A \leftrightarrow B) = min(\{max(\{1 - v(A), v(B)\}, max(\{1 - v(B), v(A)\})\})$

(c) Proof by induction that for all wffs A of L_{\leftrightarrow} , $v_1(C) = 1$:

BASIS: For each propositional parameter / atom p_i , $v_1(p_i) = 1$ by definition.

INDUCTIVE HYPOTHESIS: Suppose that for some arbitrary wffs A and B of L_{\leftrightarrow} , $v_1(A) = 1$ and $v_1(B) = 1$.

INDUCTIVE STEP Now $v_1(A \leftrightarrow B) = 1 - |v_1(A) - v_1(b)|$ (see (b)). By the inductive hypothesis, $1 - |v_1(A) - v_1(b)| = 1 - |1 - 1| = 1$.

CONCLUSION Therefore, for all wffs C of L_{\leftrightarrow} , $v_1(C) = 1$

(d) No, $\{\leftrightarrow\}$ is *not* functionally complete. Take for example the formula $\neg p_1$. We have for the valuation v_1 $v_1(\neg p_1) = 1 - v_1(p_1) = 0.$

On the other hand, by (c) we have for all wffs C of L_{\leftrightarrow} , $v_1(C) = 1$.

So there is no wff C of L_{\leftrightarrow} that is logically equivalent to $\neg p_1$ (i.e., that has the same truth value under *all* valuations, including v_1 .

Three-valued logics (10 pt)

Using a truth table, determine whether the following inference holds in $\boldsymbol{\mathtt{L}}_3:$

$$\models_{\mathsf{L}_3} (p \supset (\neg q \lor q)) \lor ((\neg q \lor q) \supset p)$$

Write out the full truth table and do not forget to draw a conclusion.

2 We make an to truth table to check whether $\frac{1}{E_2} \left(p \supset (\neg q \lor q \lor) \lor ((\neg q \lor q) \supset p) \right)$ $(p \supset (\neg q \lor q)) \lor ((\neg q \lor q) \supset p)$ 1 0 i i 1 1 0 1 0 D 0 i 0 1 0 0 Indeed in the final column, all values are $1 \in D = \{1\}$. So the inference is valid

Tableaux for FDE and related many-valued logics (10 pt)

By constructing a suitable tableau, determine whether the following inference is valid in K_3 . If the inference is invalid, provide a counter-model.

$$p \wedge ((\neg p \lor q) \land (\neg q \lor r)) \vdash_{K_3} p \land q$$

NB: Do not forget to draw a conclusion from the tableau.

3. To check whether the inference pA((7pvq) A (19vr)) To pAq is valid, we make a tableau: $p \land ((\neg p \lor q) \land (\neg q \lor r)), +$ (76V9)A(79Vr), TPVQ Tavr.+ All branches close, so the inference is valid

Fuzzy logic (10 pt)

Determine whether the following holds in the fuzzy logic with set of designated values $D_{0.8} = \{x : x \ge 0.8\}$. If so, explain why. If not, provide a counter-model and show why it is one.

$$(r
ightarrow q)
ightarrow (p
ightarrow r) \models_{0.8} p
ightarrow r$$

4 It is not the case that (r→q) → (p→r) = p→r in fuzzy logic. As a counterexample, one can take: v(p)=0.8, v(p)=0.4, v(q) = 0. $\mathcal{V}(q) = 0.$ Then $v(r \rightarrow g) = 1 - (v(r) - v(g)) = 1 - 0.4 = 06$ $v(p \rightarrow r) = 1 - (v(p) - v(r)) = 1 - 0.4 = 0.6$ So $v((r \rightarrow q) \rightarrow (p \rightarrow r)) = 1 \quad (70.8), but$ $V(p \to r) = 0.6 (< 0.8)$ So the truth value of the premise is in D, but not the truth value of the conclusion.

Basic modal tableau (10 pt)

By constructing a suitable tableau, determine whether the following is valid in K. If the inference is invalid, provide a counter-model.

$\Box\Box q \vdash_{K} \Box(p \supset \Box q) \land (\Diamond p \supset \Diamond\Box q)$

NB: Do not forget to draw a conclusion from the tableau.

5. To test whether the inference ODg + D(p20g), (\$p200g) is valid we make a tableau: $\square \square q, 0$ ¬(U(p>0q)∧(Sp>00q),0 70(p>09),0 $\neg(\Diamond p \supset \Diamond \Box q), O$ or1 QD.O 7(p > 0q), 1 $\neg \Diamond \Box q, 0$ 022 709,1 $\Box q, 1$ p, 2711g,2 19.2 The tree closes (both branches are Closed), so the inference is valid.

Normal modal tableau (10 pt)

By constructing a suitable tableau, determine whether the following tense-logical inference is valid in K_{τ}^{t} (transitive). If the inference is invalid, provide a counter-model.

$$\langle F \rangle q \vdash_{K^t_\tau} \langle F \rangle (q \wedge [F] \neg q)$$

NB: Do not forget to draw a conclusion from the tableau.

6. To chack whether the orference <F>9 F: <FX(qA[F]1q) is valid in K⁶, we make a tablean K^F (FZA.O 7(F)(q1[F]79),0 021 q,1 ¬(q∧[F]¬q),1 79.1 X 79.1 7[F]79,1 142 779,2 9.2 012 7(9 A [F]79),2 79,2 7[F]79,2 × 213 779,3 9.3 023,113 -7(q ~ [F]7q), 3 There is an infinite complete branch ; so the inference is 75F]79.3 not valid. 384 We give · the counteresample 779,4 here 9,4 @I= < W, R, v > with W= { Wo, W1 W2, W3, 024,174,224 = Ewilie N?
$$\begin{split} R &= \frac{2}{5} \langle w_i, w_j \rangle [i, j \in \mathbb{N}, i < j] \\ v_{\overline{w_i}}(q) &= 1 \quad \text{for all } i \in \mathbb{N}. \\ (Also OK \quad writh \quad v_{\overline{w_i}}(q) \end{cases} \end{split}$$
Rhe with v (q) = "arbitrary Complete open, of

Answer 6 - zoomed in to top of tableau

Answer 6 - zoomed in to bottom of tableau

022 7(91 [F]79)2 79,2 7[F]79,2 X 779,3 9.3 023,113 7(q ~ [F]79), 3 There is an infinite complete branch , so the inference is 7[F]79.3 not valid. 354 We give the counteresamples 779,4 here: 914 @ I= < W, R, v > with W= { Wo, W1 WZ, W3, ... } 024,174,224 $R = \frac{1}{2} \left\{ w_{i}, w_{j} > 1 \right\} \left\{ i \in N \right\}$ $R = \frac{1}{2} \left\{ w_{i}, w_{j} > 1 \right\} \left\{ i, j \in N, i < j \right\}$ $v_{w_{i}}(q) = 1 \quad for \quad all \quad i \in N.$ $(Also \quad OK \quad w_{i} M \quad v_{w_{0}}(q) = \frac{n}{arb} w_{om}$ Complete open, (*

Soundness and completeness (10pt)

As a reminder, the rule φ for tense logic is:

$$jrk \qquad irj \\ irk \\ \downarrow \\ j = k \qquad krj$$

And the auxiliary rules for = (that are included in the tense logic tableau system K_{φ}^{t}) are as follows, where α is a formula of the temporal language:

$$\begin{array}{ll} \alpha(i) & \alpha(i) \\ i = j & j = i \\ \downarrow & \downarrow \\ \alpha(j) & \alpha(j) \end{array}$$

Let *b* be a complete open branch of a K_{φ}^{t} -tableau, and let $I = \langle W, R, v \rangle$ be an interpretation that is *induced* by *b*. Show that the accessibility relation *R* of *I* is *forward convergent*, that is, for all $x, z, y \in W$, if *xRy* and *xRz*, then (*zRy* or y = z or *yRz*).

7. Let b be an open complete branch of a Ky - tableau and let I = (W, R, v) be an interpretation that is induced by b. In order to show that R is forward convergent, suppose x, E & are arbitrary worked in W with ZRy and XRZ Because I is induced by b, there are i, K, j appearing on the branch such that $x = w_i, y = w_j$ and $z = w_k$, So Wi R W. and Wi R Wy. Again because I is induced by b, this implies that it is and it to appear on to. But b is complete, so the rule of has been applied, and at least one of jrk, j= h or hr j appears on b. Suppose jok appears on b, then w. R. w. (I is induced Suppose j=h appears on b, then w= Wk (I is induced) Suppose krj appears on 6, then wi Rw; (I is induced by b In all three cases, W; R w, or w; = w or W, R w;, i.e. XRyozy= 2 or yR2. So R is forward convergent (as X, y, 2 were arbitrary with XRy and XR2).

First-order modal tableau, variable domain (10 pt)

By constructing a suitable tableau, determine whether the following is valid in VK. If the inference is invalid, provide a counter-model.

$$\forall x \Box \forall y Pxy \vdash_{VK} \forall x \forall y \Box Pxy$$

NB: Do not forget to draw a conclusion from the tableau.

Answer 8, top half

8. To check whither the inference IXD by PXY IX VX UI PXY is valid, we make a tableau: VXD Vy Pxy, O TVX Vy D Pxy, O JX 7 Vy D Pxy, 0 Ea, O TYy D Pary, 0 Jy JDPxy, 0 Eb. 0 - BPab,0 or1 - Pab, 1 TEq.O DyPay,0

Answer 8, bottom half

7Ea,0 U Vy Pay,0 By Pby, o TEb -X Vy Pay, 1 Fy Pby. 1 Pab,1 78 6,1 Paa,1 7Ea. 1 P66,1 786,1 78a,1 Pba,1 The tableau has at least one open complete Brank & So the inference is not valid. Counterexample from D. $I = \langle D, W, R, v \rangle$ with $D = \{\beta_a, \delta_b, V, W = \{w_b, w_i\}$ $R = \{\langle w_0, w_1 \rangle\}, \quad v_{w_0}(\varepsilon) = \{\xi_a, \xi_b\} = D_{w_0}$ $v_{a,\zeta}(\varepsilon)$ can be chosen arbitrarily $v_{a,\zeta}(\rho) = \{\langle \delta_a, \delta_a \rangle, \langle \delta_b, \delta_b \rangle, \langle \delta_b \rangle, a_b \}$

Default logic (10 pt)

Consider the following set of default rules, where p, q, r, s are propositional atoms:

$$D = \left\{ \delta_1 = \frac{p : q \wedge r}{s}, \qquad \delta_2 = \frac{p : q \wedge \neg r}{\neg r}, \qquad \delta_3 = \frac{s : \neg q}{\neg q} \right\},$$

and initial set of facts:

$$W = \{p\}.$$

This exercise is about the default theory T = (W, D).

- Of each of the following sequences, state whether it is a *process*; and if so, whether or not the process is *closed*, and whether or not it is *successful*. Briefly explain your answers.
 1.1 (δ₁)
 1.2 (δ₁, δ₂)
- 2. Draw the process tree of the default theory (W, D).
- 3. What are the extensions of (W, D)?
- 4. Is $q \wedge s$ a credulous consequence of (W, D)? Explain.

9. For $D = \{ \delta_1 = \frac{p: qAr}{s}, \delta_2 = \frac{p: qAr}{r}, \delta_3 = \frac{s: \tau q}{\tau q} \}$ and $W = \{ p \}$, we answer the question: (a) (i) (S,) is a process because S, is applicable to In () = Th (8 p3). This is the case because the prerequist p of δ_1 is in Th($\{zp\}$), while $\neg(q_{\Lambda r}) \notin Th(\{zp\})$. (δ_1) is not closed, because δ_2 is applicable to $J_{\Lambda}(\delta_1) = Th(\{zp, S\})$. This is the case because p is in Th($\{p, s\}$), while $\neg(q_{1}\neg r) \notin Th(\{p, s\})$ $= \frac{1}{2} \left(\frac{f_{1}}{f_{2}} \right) \text{ is successful because } \frac{1}{2} \left(\frac{f_{1}}{f_{2}} \right) \cap \left(\frac{f_{1}}{f_{2}} \right) \cap \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \cap \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \emptyset$ (ii) (S1, S2) is a process, because S1 is applicable to Fn() and by is applicable to In(b) (for both, see (i)). (S1, S2) is not closed, because Sz is applicable to In (F1, S2): SETT ({p, s, rr}), while rige Th ({p, s, rr}). It is not Successful, because 7(qur) follows from Th Ep. S. 7r }, so In (Sa, Sz) a Out (Sa Sz) + &

Answer 9 b,c,d

Th (203) . Ø 6 £2 81 Th (2p, 7r})! [(qл) Th (2p, s}) 7(g1r)} Successful Sz Th ({p, s, 7+}) { 27(qAr), 7(qA7r)} J2 f 2 Th [2p.S, 7r, 7g] [1 (q1r), 7 (q171), 779] closed Failed Th({ [p, s, 79]) { [-(gAr), 779] closed There are closed successful foiled no extensions anches, equence of (W,D), because there is a member (see c: no entersity atall, as is not a Credulous contegue is no extension of which it is